ARTIFICIAL INTELLIGENCE AND ART
THE CONCEPTUAL MODEL OF GENERATIVE ADVERSARIAL NETWORKS IN THE CREATIVE PROCESS OF ART FOR DIGITAL GAMES
DOI:
https://doi.org/10.14244/2179-1465.RG.2024v15i1p115-138Keywords:
Artificial intelligence, digital games, artAbstract
The interaction between artificial intelligence (AI) and art has emerged as a promising field within the contemporary creative process. In this article, we explored how the generative adversarial networks (GAN) model could assist in the creation of two-dimensional (2D) assets for digital game artists. To achieve this aim, we conducted a review of the literature and a case study with 2D assets from the Axie Infinity game. Through the research, it was discovered that the model synthesized new images that aligned with the characteristics and features similar to the dataset used in the model's training. This suggests that GANs can be employed to inspire new assets, produce novel images, and be directly integrated into digital games.
Downloads
References
ARANTES, P. Arte e mídia: perspectiva da estética digital. São Paulo: Senac, 2005.
BERGER, C. Perceptrons: the most basic form of neural network. Applied Go, EUA, 09 jun. 2016. Disponível em: https://appliedgo.net/perceptron/. Acesso em: 23 jun. de 2022.
BITTENCOURT, G. Inteligência artificial: ferramentas e teorias. Florianópolis; Ed. da UFSC, 1998.
BULHÕES, G. Até 2023, o mercado de games pode somar mais de US$ 200 bilhões. Olhar digital, São Paulo, 4 de jan. de 2022. Disponível em: https://olhardigital.com.br/
/01/04/pro/ate-2023-mercado-dgames-pode-somar-mais-de-us-200-bilhoes/. Acesso em: 6 de jan. de 2022.
CACCIA, L. C. M. Réseaux de neurones artificiels. Acrromoth, EUA, 2018. Disponível em: http://accromath.uqam.ca/2018/09/reseaux-de-neurones-artificiels. Acesso em: 6 de jan. de 2022.
CRISTOFFERSON, A.; JAMES, A.; OBRIEN, A.; ROWLAND, T. Level up: the future of video games is bright. Bain & Company, Massachusetts, 12 out. 2022. Disponível em: https://www.bain.com/insights/level-up-the-future-of-video-games-is-bright%20Bain%20&%20%20Company. Acesso em: 14 fev. 2023.
DRESCH, A.; LACERDA, P. D. JÚNIOR, A. V. A. J. Design science research: métodos de pesquisa para avanço da ciência e tecnologia. Porto Alegre: Bookman, 2020.
DUARTE, R. A arte. São Paulo: Martins fontes. 2012.
GALANTER, P. What is generative art? Complexity theory as a context for art theory. In: International conference on generative Art, 2003, Italy. Anais do Proceedings of the International Conference on Generative Art, Italy, 2003. p. 1-21.
GOODFELLOW, J. I.; ABADIE, P. J.; MIRZA, M.; XU, B.; FARLEY, W. D.; ORZAIR, S.; COURVILLE, A.; BENGIO, Y. Generative adversarial nets. Ithaca: ArXiv, jun. 2014. Disponível em: https://arxiv.org/abs/1406.2661. Acesso em: 04 mar. 2022.
GIL, A. C. Como elaborar projetos de pesquisa. 7. ed. São Paulo: Atlas, 2022.
GRANDO, N. Neurônios e redes neurais artificias. Blog do Nei. 3 de mar. de 2022. Disponível em: https://neigrando.com/2022/03/03/neuronios-e-redes-neurais-artificiais/. Acessado em: 3 de jun. de 2022.
HAMMOND, K. Pratical artificial intelligence for dummies. Nwe Jersey: John Wiley & Sons, 2015.
HAVALDAR, P.; MEDIONI, G. Multimedia systems: Algorithms, Standards, and Industry Practice. Boston: Course Technology, 2020.
HUIZINGA, J. Homo ludens. São Paulo, 2020.
JO, T. Machine learning foundations: supervised, unsupervised, and advanced learning. Alemanha: Springer, 2021.
KENT, S. L. The ultimate history of video games: from pong to pokémon and beyond - the story behind the craze that touched our lives and changed the world. New York: Three Rivers Press, 2001.
KUNTAL, G. Learning generative adversarial networks: next-generation deep learning simplified. EUA: Packt Publishing, 2017.
LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, v. 521, n. 7553, p. 436-444, 2015. Disponível em: https://www.nature.com/articles/nature14539. Acesso em: 01 mar. 2023.
LEMOS. A. O que é inteligência artificial e como ela funciona. Folha de são paulo, São Paulo. 12 de maio de 2022. Disponível em: https://www1.folha.uol.com.br/tec/2022/05/o-que-e-inteligencia-artificial-e-como-ela-funciona.shtml. Acesso em: 3 jun. 2022.
LIESER, W. Arte digital. Portugal: Konemann, 2020.
LIMA, L. A. B. Estado da arte da pesquisa sobre a indústria de jogos digitais no Brasil: temáticas correntes e caminhos futuros. Revista GEMInIS, v. 14, n. 1, jan./abr., 2023.
LUZ, A. R. Vídeos games: história, linguagem e expressão gráfica. São Paulo: Blucher, 2010.
MENDONÇA, F. C. I. Redes neurais convulsionais gerando arte: uma aplicação em obras de Jê Américo. Monografia, Universidade de São Paulo, São Paulo, 2019. Disponível: https://bcc.ime.usp.br/tccs/2018/isacfm/files/monografia.pdf. Acesso em: 20 jun. 2022.
MUELLER, J. P.; MASSARON, L. Machine learning for dummies. Nwe Jersey: John Wiley & Sons, 2021.
MÁTARAS, L. R. Artificial intelligence and the Arts: toward computational creativity. In: GREY, A.; ROSSITER, J. (org.). The next step: exponential life. EUA: Bbva-Open Mind, 2017.
NGUYEN, M. H. T. Fundamentals of 2D game srt. Oklahoma: Spring, 2021.
PACETE, G. L. 2022 promissor: mercado de games ultrapassará US$ 200 bi até 2023. Forbes, São Paulo, 3 de jan. de 2022. Disponível em: https://forbes.com.br/forbes-tech/2022/01/com-2022-decisivo-mercado-dgames-ultrapassara-us-200-bi-ate-2023/. Acesso em: 6 de jan. de 2022.
PHILLIPS, D. Machine learning: jump on the way to thef future, discover artificial intelligence and data science, maximize your business in the modern world mastering deep learning, python and algorithms. New York: Dan Phillips. 2020.
RHYS, E.; MICHEIEL, B.; LINDA, T. D.; RAE-WOO, K.; MINH, T. L. N.; HUGO, T.; TIANYI, G.; TOMOFUMI K.; LUCA, C.; GUILHERME, F.; FRANK C.; TIAGO R.; ALEXIS P. Global games market report. EUA: Newzoo. 2022.
ROGERS, S. Level up: um guia para o design de grandes jogos. São Paulo: Blucher, 2013.
RUMELHART, D.; MCCLELLAND, J; Parallel distributed processing: explorations in the microstructure of cognition. MIT Press, 1986.
RUSSELL, S.; NORVIG, P. Inteligência artificial. Rio de Janeiro: Elsevier, 2013.
SALGADO, L. A. Z. Arte digital. Curitiba: Intersaberes. 2020.
SHAHRIAR, S. GAN computers generate arts? A survey on visual arts, music, and literary text generation using generative adversarial network. ArXiv, Ithaca, ago. 2021. Disponível em: https://ieeexplore.ieee.org/document/9507424. Acesso em: 13 mar. 2023.
THOMPSON, J. S. Machine law, ethics, and morality in the age of Aartificial intelligence. Hershey: IGI Global, 2021.
TIERNAN, J. Is AI really an art and design killer. Vectornator, EUA, 18 nov. 2022. Disponível em: Disponível em: encurtador.com.br/tLSW1. Acesso em: 15 fev. 2023.
TOLCHEVA, S. 6 Ways AI-Generated art is changing the future of art. MUO. EUA, 14 out. 2022. Disponível em: https://www.makeuseof.com/ways-ai-generated-art-changing-future-of-art/. Acesso em: 15 fev. 2023.
WILLIAMS, A. History of digital games: developments in art, design, and interaction. Focal Press: Focal Press, 2017.
WILLRICH, R. Sistemas multimídia distribuídos. Florianópolis: UFSC, 2000.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jefferson Valentim, Ed Porto Bezerra
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this journal agree to the following terms:
a. Authors retain copyright and grant the journal the right of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that allows sharing of the work with acknowledgment of authorship and initial publication in this journal.
b. Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, to publish in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.